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REVIEWS 

Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. 

This extensive and impressive work is devoted to a number of topics in stability 
theory, selected principally from those to which the author has made so many 
contributions, both personally and by the guidance and inspiration he has given 
to the work of his students. The main important topic omitted in the stability 
of viscous shear flow-thus the book is complementary to C. C. Lin’s monograph. 

After a brief introduction, chapters II-v are devoted to the B6nard problem 
and its modifications when rotation and magnetic fields are taken into account. 
Chapter VI considers convective instability in spheres and spherical shells, 
including a study of the effects of rotation. Chapters VII-IX take up the study 
of Couette flow and other flows between coaxial cylinders, including the hydro- 
magnetic case. Chapter x deals with Rayleigh-Taylor instability, the effects of 
surface tension, rotation and magnetic fields being considered. Chapter XI is 
on Kelvin-Helmholtz instability in the inviscid case, taking account of inter- 
facial tension, continuous density stratification, and the effects of rotation and 
magnetic fields. Chapter XII considers the stability of jets and cylinders held 
together by gravitational or capillary forces, including the hydromagnetic case. 
Chapter XIII is on gravitational instability and the effects of rotation and 
magnetic field on Jeans’s criterion. Variational formulae and techniques are 
emphasized and used throughout the book, and the last chapter considers this 
topic in a general context. In  addition there are several useful appendices. 

A typical chapter begins with a general discussion of the problem under 
consideration, perhaps deriving, and commenting on, some relevant general 
hydrodynamical theorems. The perturbation equations are then set out in 
detail, with the boundary conditions and where appropriate a variational 
formulation. The solutions are next discussed, usually first in a simple case 
(for instance, free boundary conditions in the B6nard problem) where ele- 
mentary methods suffice, followed by a presentation of methods which can be 
used in more difficult cases. Many detailed numerical results of such calculations 
are given. The possibility that the onset of instability occurs by overstable 
oscillations rather than steady convection is either proved not to occur or 
given separate treatment. Finally, any relevant experimental data is presented 
and discussed, and the chapter closes with extensive bibliographical notes. 

The presentation throughout is systematic and thorough and mostly authori- 
tative, though of course some sections are already a bit out of date-an inevitable 
consequence of writing a book on topics of active current research. The syste- 
matic theoretical treatment, the compact presentation of the results of many 
difficult numerical calculations, the discussion of experimental results and the 
extensive bibliography make this an extremely useful book for reference pur- 
poses-one which will be wanted in the library by all, and on the desk by many, 
of those whose work is connected with hydrodynamic or hydromagnetic stability. 

Clarendon Press: Oxford University Press, 1961. 652 pp. $5. 5s. 
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However, even Homer nods. In  spite of the great overall value of this large 
book, it does contain a few misleading or incorrect statements. It is perhaps 
relevant to comment briefly on a couple of these, since the book will undoubtedly 
be extensively used for reference purposes. On page 97 we find the result that 
the critical temperature gradient for the onset of stationary convection in a 
rotating layer of fluid heated from below is proportional to (SZ/d)* K Y - f  for 
large Taylor number. (!2 is the angular velocity, d the thickness of the layer, 
K and v the coefficients of thermometric conductivity and kinematic viscosity.) 
From this the conclusion is drawn that ‘an inviscid, ideal fluid, in rotation, is 
stable with respect to the onset of stationary convection for all adverse tempera- 
ture gradients. This is clearly a consequence of the Taylor-Proudman theorem. ’ 
Now, first of all, the Taylor-Proudman theorem is not immediately relevant to 
the convection problem, because it is deduced on the assumption that the 
external force is derivable from a potential, and this is not true of the buoyancy 
force, whose curl is in fact proportional to k x V T .  However, it  can be shown that 
the usual conclusion about the two-dimensional character of the motion follows 
anyway. But one must be careful in such limiting processes: if the inviscid 
limit is taken with fixed Pradtlnumber instead of fixed K ,  the critical temperature 
gradient goes to zero instead of infinity and even the slightest adverse tempera- 
ture gradient would appear to make the fluid unstable. Taking the limit in this 
way and following the steady convection solutions one finds in fact that for any 
fixed adverse temperature gradient there is a limiting neutral solution having a 
certain limiting horizontal wave-number. If the magnitude of the vertical 
velocity perturbation is held fixed, the temperature and vorticity perturbations 
become infinite; if they are held finite, the vertical velocity perturbation is zero 
in the limit, and the flow i s  two-dimensional; nevertheless i t  is appropriate to 
call it a ‘steady convection’. Furthermore, at  all larger horizontal wave-numbers 
there are unstable solutions having a real growth factor ep t ,  and these are not 
two-dimensional. If K is held fixed as v --f 0 the flow is also unstable, by over- 
stable oscillations, for any positive adverse temperature gradient. The point is 
that the statement quoted above, and perhaps even more the discussion in 3 24, 
seem to imply that even the slightest rotation is capable of stabilizing so funda- 
mentally unstable a situation as an inviscid layer with an adverse temperature 
gradient, and this is not so. The discussion in $$4O(c )  and 41 of the magnetic 
analogue of the Taylor-Proudman theorem is similarly misleading : the fact 
that steady small inviscid flows must be two-dimensional in the presence of a 
vertical magnetic field does not mean that the inviscid case is necessarily stable; 
see, for instance, equation 1 ~ 1 6 9 ,  p. 172. 

In  the chapter on the stability of Couette flow, a presentation is given ($67) 
of Rayleigh’s result that a sufficient condition for stability, with respect to 
axisymmetric perturbations, of inviscid Couette flow is that the square of the 
circulation should nowhere decrease outwards. This is followed by an alleged 
proof that Rayleigh’s condition is necessary and sufficient for stability of such 
flows to arbitrary, three-dimensional perturbations. While the argument given 
has some ingenious features, I find it incomprehensible at certain points, and 
the result is certainly wrong. A simple counter-example is given by a flow with 
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constant angular velocity in, say, the inner half of the region between the cylinders 
and another, larger, constant angular velocity in the outer half. Rayleigh’s 
criterion is satisfied, but the flow is obviously unstable except to axisymmetric 
perturbations. In  fact, the stability problem is trivial to solve explicitly in the 
case of two-dimensional perturbations and the flow is actually unstable to all 
(positive integral) wave-numbers. Other examples, without the discontinuity, 
can also be readily constructed. Rayleigh himself clearly recognized that the 
circulation-increasing-outwards condition was restricted to axisymmetric 
perturbations and gave a different condition (monotonic vorticity) sufficient 
for stability with respect of two-dimensional perturbations.. It should be men- 
tioned that the failure of Rayleigh’s circulation criterion for arbitrary perturba- 
tions does not affect the illustrative examples given in the book, which are 
concerned with the inviscid stability of velocity profiles actually realizable as 
steady viscous flows between rotating cylinders. These have uniform vorticity, 
and Rayleigh’s vorticity stability condition implies their stability to two- 
dimensional perturbations, and, as the detailed calculation shows, they are also 
stable to arbitrary perturbations if the first condition is satisfied. 

Similar criticisms apply to the arguments of $ 7 8 ( b )  in which Rayleigh’s 
criterion is supposedly extended to the case of axial flow in addition to the 
rotational flow with circulation increasing outwards. A simple counter-example 
is a rotational flow with constant angular velocity superposed on an axial flow 
which is zero in the inner half of the space between the cylinders and a non-zero 
constant in the outer half. 

These criticisms apply to only a very small fraction of the work and by no 
means affect the conclusion that as a whole this book is a most valuable contri- 

LOUIS N. HOWARD bution. 


